Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces. To assess whether Arabidopsis plants possess a mechanism for secreting RNA onto leaf surfaces, we developed a protocol for isolating leaf surface RNA separately from intercellular (apoplastic) RNA. This protocol yielded abundant leaf surface RNA that displayed an RNA banding pattern distinct from apoplastic RNA, suggesting that it may be secreted directly onto the leaf surface rather than exuded through stomata or hydathodes. Notably, this RNA was not associated with either extracellular vesicles or protein complexes; however, RNA species longer than 100 nucleotides could be pelleted by ultracentrifugation. Furthermore, pelleting was inhibited by the divalent cation chelator EGTA, suggesting that these RNAs may form condensates on the leaf surface. These leaf surface RNAs are derived almost exclusively from Arabidopsis, but come from diverse genomic sources, including rRNA, tRNA, mRNA, intergenic RNA, microRNAs, and small interfering RNAs, with tRNAs especially enriched. We speculate that endogenous leaf surface RNA plays an important role in the assembly of distinct microbial communities on leaf surfaces.more » « less
- 
            SUMMARY Maize anthers emerge from male‐only florets, a process that involves complex genetic programming and is affected by environmental factors. Quantifying anther exertion provides a key indicator of male fertility; however, traditional manual scoring methods are often subjective and labor‐intensive. To address this limitation, we developedTasselyzer— an accessible, cost‐effective, and time‐saving method for quantifying maize anther exertion. This image‐based program uses the PlantCV platform to provide a quantitative assessment of anther exertion by capturing regional differences within the tassel based on the distinct color of anthers. We applied this method to 22 maize lines with six genotypes, showing high precision (F1score > 0.8). Furthermore, we demonstrate that customizing the parameters to assay a specific line is straightforward and practical for enhancing precision in additional genotypes. Tasselyzer is a valuable resource for maize research and breeding programs, enabling automated and efficient assessments of anther exertion.more » « less
- 
            Abstract Small RNAs play important roles during plant development by regulating transcript levels of target mRNAs, maintaining genome integrity, and reinforcing DNA methylation.Dicer-like 5(Dcl5) is proposed to be responsible for precise slicing in many monocots to generate diverse 24-nt phased, secondary small interfering RNAs (phasiRNAs), which are exceptionally abundant in meiotic anthers of diverse flowering plants. The importance and functions of these phasiRNAs remain unclear. Here, we characterized several mutants ofdcl5, including alleles generated by the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9system and a transposon-disrupted allele. We report thatdcl5mutants have few or no 24-nt phasiRNAs, develop short anthers with defective tapetal cells, and exhibit temperature-sensitive male fertility. We propose that DCL5 and 24-nt phasiRNAs are critical for fertility under growth regimes for optimal yield.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
